Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Chem Zvesti ; : 1, 2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2294753

ABSTRACT

[This corrects the article DOI: 10.1007/s11696-022-02528-y.].

3.
Chem Zvesti ; : 1-20, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2258382

ABSTRACT

The current viral pandemic, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), creates health, mental, economic, and other serious challenges that are better to say global crisis. Despite the existence of successful vaccines, the possible mutations which can lead to the born of novel and possibly more dangerous variants of the virus as well as the absence of definitive treatment for this potentially fatal multiple-organ infection in critically ill patients make us keep searching. Theoretically targeting human and viral receptors and enzymes via molecular docking and dynamics simulations can be considered a wise, rational, and efficient way to develop therapeutic agents against COVID-19. In this way, The RNA-dependent RNA polymerase (RdRP), main protease, and spike glycoprotein of SARS-CoV-2 as well as the human angiotensin-converting enzyme 2 receptor and transmembrane serine protease 2 are the most discussed and studied targets that play essential roles in the viral life and infection cycle. In the current in silico investigation, the guanidine functionality containing drugs and medicinal substances such as metformin, famotidine, neuraminidase inhibitors, antimalarial medications, anticancer drug imatinib, CGP compounds, and human serine protease inhibitor camostat were studied against the above-mentioned therapeutic targets and most of them (especially imatinib) have revealed an incredible spectrum of free docking scores and MD results. The current in silico investigation that its novel perspective of view is corroborated by the different experimental and clinical evaluations, confirms that the guanidine moiety can be considered as a missing promising pharmacophore in drug design and development approaches against SARS-CoV-2. Considering the chemical potency of this polyamine group in chemical interaction creation, the observed outcomes in this virtual screening were not surprising. On the other hand, the guanidine functional group has unique physico-chemical properties such as basicity that can make the target cells intracellular pH undesirable for the virus entry, uncoating, and cytosolic lifecycle. According to the obtained results in the current study that are interestingly confirmed by the previously reported efficacy of some the guanidine carrying drugs in COVID-19, guanidine as a potential multi-target anti-SARS-CoV-2 functional scaffold deserves further comprehensive investigations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02528-y.

4.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2126322

ABSTRACT

The SARS-CoV-2, the virus which is responsible for COVID-19 disease, employs its spike protein to recognize its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequently enters the host cell. In this process, the receptor-binding domain (RBD) of the spike has an interface with the α1-helix of the peptidase domain (PD) of ACE2. This study focuses on the disruption of the protein-protein interaction (PPI) of RBD-ACE2. Among the residues in the template (which was extracted from the ACE2), those with unfavorable energies were selected for substitution by mutagenesis. As a result, a library of 140 peptide candidates was constructed and the binding affinity of each candidate was evaluated by molecular docking and molecular dynamics simulations against the α1-helix of ACE2. Finally, the most potent peptides P23 (GFNNYFPHQSYGFMPTNGVGY), P28 (GFNQYFPHQSYGFPPTNGVGY), and P31 (GFNRYFPHQSYGFCPTNGVGY) were selected and their dynamic behaviors were studied. The results showed peptide inhibitors increased the radius, surface accessible area, and overall mobility of residues of the protein. However, no significant alteration was seen in the key residues in the active site. Meanwhile, they can be proposed as promising agents against COVID-19 by suppressing the viral attachment and curbing the infection at its early stage. The designed peptides showed potency against beta, gamma, delta, and omicron variants of SARS-CoV-2.

5.
Comput Biol Med ; 146: 105625, 2022 07.
Article in English | MEDLINE | ID: covidwho-1850905

ABSTRACT

The outbreak of COVID-19 has resulted in millions of deaths. Despite all attempts that have been made to combat the pandemic, the re-emergence of new variants complicated SARS-CoV-2 eradication. The ongoing global spread of COVID-19 demands the incessant development of novel agents in vaccination, diagnosis, and therapeutics. Targeting receptor-binding domain (RBD) of spike protein by which the virus identifies host receptor, angiotensin-converting enzyme (ACE2), is a promising strategy for curbing viral infection. This study aims to discover novel peptide inhibitors against SARS-CoV-2 entry using computational approaches. The RBD binding domain of ACE2 was extracted and docked against the RBD. MMPBSA calculations revealed the binding energies of each residue in the template. The residues with unfavorable binding energies were considered as mutation spots by OSPREY. Binding energies of the residues in RBD-ACE2 interface was determined by molecular docking. Peptide inhibitors were designed by the mutation of RBD residues in the virus-receptors complex which had unfavorable energies. Peptide tendency for RBD binding, safety, and allergenicity were the criteria based on which the final hits were screened among the initial library. Molecular dynamics simulations also provided information on the mechanisms of inhibitory action in peptides. The results were finally validated by molecular docking simulations to make sure the peptides are capable of hindering virus-host interaction. Our results introduce three peptides P7 (RAWTFLDKFNHEAEDLRYQSSLASWN), P13 (RASTFLDKFNHEAEDLRYQSSLASWN), and P19 (RADTFLDKFNHEAEDLRYQSSLASWN) as potential effective inhibitors of SARS-CoV-2 entry which could be considered in drug development for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Binding Sites , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Peptides/metabolism , Peptides/pharmacology , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry
6.
Nat Prod Res ; 36(16): 4254-4260, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1402225

ABSTRACT

This research investigates antiviral potential of extracted honeybee products against COVID-19 main protease (Mpro) by computational methods. The crystal structure of COVID-19 Mpro was obtained from the protein data bank. Six synthetic drugs with antiviral properties were used as control samples in order to compare the results with those of natural ligands. The six honeybee components, namely 3,4,5-Tricaffeoylquinic acid, Kaempferol-3-O-glucoside, (E)-2'-Geranyl-3',4',7-Trihydroxyflavanone, 6-Cinnamylchrysin, (+)-Pinoresinol, and (24E)-3-Oxo-27,28-dihydroxycycloart-24-en-26-oic acid, have represented the lowest binding energies of -9.0, -8.5, -8.2, -7.8, -7.7, -7.3 and -6.7 Kcal/mol, respectively. These natural inhibitors were then picked for further investigations on their pharmacokinetic features. Also a 150 ns of Molecular dynamics simulations were carried out in order to evaluate their effects on protein structure and dynamics. The 3, 4, 5-Tricaffeoylquinic acid is hopefully proposed for COVID-19 Mpro inhibition if further in vitro, in vivo, and clinical trial studies will approve its effectiveness against COVID-19.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bees , Biological Products/pharmacology , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL